Elliptische Krommen

prime = 17
A\B012345678910111213141516A\B
0-18181818181818181818181818181818 0
14x41824171415202x625252x6201514172418 1
22x102x1219221618111221211211181622192x12 2
3261516122x10232114--1421232x10121615 3
44x4241420252x61517181817152x625201424 4
526-1514162112232x102x10231221161415- 5
61022242x81521-20131320-21152x82422 6
7102415-1320212x822222x8212013-1524 7
82x10191611211218222x122x1222181221111619 8
92x10212x121219112218161618221119122x1221 9
101013222024-2x8211515212x8-24202213 10
1110151321222x820-2424-202x822211315 11
1226162x1021-1423121515122314-212x1016 12
134x425182x6242017151414151720242x61825 13
14262x10-231512142116162114121523-2x10 14
152x101621182x1222121119191112222x12182116 15
164x414251518172x6202424202x61718152514 16
A\B012345678910111213141516A\B
 other
 singular
 prime
 supersingular
 anomalous