Elliptische Krommen

prime = 23
A\B012345678910111213141516171819202122A\B
0-24242424242424242424242424242424242424242424 0
124282x1227292221182x142032331516282x1030272619212x1220 1
22430202x12263329211621202x102x14282732271915222x122818 2
3241528162x1228272x1029302227212618192x1421202x12322033 3
424272120152x10262x1228291832163019202x12222x1433282721 4
52x123121232018-182x162526183022232x830-3028252717 5
6242x14302820272x12322627331929152122162x12212820182x10 6
72x122x16303125-212630231828203025182227-2317182x8 7
8242x1229212x1432152830262120282722182033162x1027192x12 8
924211526281816192x122x14282127202x102x1229323020223327 9
102x123025213018202522-172x82x1631-2623283018272318 10
112x1225302022172x16-2330271830211825-2x83126281823 11
122416273021192020152x122x1022262x142x123328282927182132 12
132426162x14272x123033212819282029202715182x12212x103222 13
142x12222330-28251730212x818302x162718312320-182526 14
152x123031222123232x8203018--3018282x16252527261718 15
162420262916202x142727152x1218302x123321212x102832192228 16
172x122120-2x1626302330302517312318182518222x8-2827 17
1824292x1415302128222016272x122x1221322826202718332x1019 18
192x1230222x1623273018-312823252017-301821252x82618 19
202x1223-25302x83027312018262230281721182x161823-25 20
212x12202x1630302531182522-2721-262330172318182x828 21
222x12-303031182228212x16232523252x827202630171818- 22
A\B012345678910111213141516171819202122A\B
 other
 singular
 prime
 supersingular
 anomalous