Elliptische Krommen

prime = 41
A\B012345678910111213141516171819202122232425262728293031323334353637383940A\B
0-42424242424242424242424242424242424242424242424242424242424242424242424242424242 0
14x83540393247453851512x242x20482x1844423830484053534048303842442x18482x202x24515138454732394035 1
22x26393636542x223749462x2444462x18524433403142334545334231403344522x1846442x244649372x2254363639 2
33448424x12502x2240474139333034524249372x16-48454548-2x1637494252343033394147402x22504x124248 3
44x8472x244253382x204535325144403048384039512x1848482x185139403848304044513235452x203853422x2447 4
52x2636543746442x184440424533313352462x24492x22363939362x22492x244652333133454240442x184446375436 5
6504450-2x26542x20363732364751344243423935452x182x18453539424342345147363237362x20542x26-5044 6
734373947-4242302x22455034524x1248403349482x1641412x1648493340484x12523450452x22304242-473937 7
82x262x2244334540463739542x244433312x184936364652424252463636492x183133442x2454393746404533442x22 8
92x264539333642363154402x223337444952462x182x24464444462x242x184652494437332x22405431364236333945 9
104x82x24532x20355140484051482x183938304432453842474742384532443038392x18485140484051352x20532x24 10
113441372x1639484749-3342404248304x122x2252453450503445522x224x12304842404233-494748392x163741 11
12342x2233494537304048503942482x163447424x124152--52414x124247342x1648423950484030374549332x22 12
1334-2x22523341494x12454237473034402x16484850423939425048482x16403430473742454x12494133522x22- 13
145042323635504247542x182x265134-452x20364344393737394443362x2045-34512x262x185447425035363242 14
1550502x262x203736514242352x184539433447323654-4444-54363247344339452x183542425136372x202x2650 15
164x83851384840442x20475332482x183940452x2442353051513035422x244540392x18483253472x20444048385138 16
17502x263751422x183934325444-364743453542362x2050502x2036423545434736-44543234392x184251372x26 17
184x848472x182x24514239534038382x20484530354032445151443240353045482x20383840533942512x242x184748 18
1950362x18474432455150373534-3639422x262x204243545443422x202x26423936-3435375051453244472x1836 19
202x26444546392x24332x183646425236493144543740332x222x223340375444314936524246362x18332x2439464544 20
212x264640312x2439493342443637443346362x2252452x1854542x1845522x2236463344373644423349392x24314046 21
2250374239324436433536502x20424547-54342x18512x262x26512x183454-4745422x2050363543364432394237 22
234x8403245512x2448443848534030422x182x20513847393535394738512x202x1842304053483844482x2451453240 23
24505436432x1842472x20442x2632424539513650-373435353437-503651394542322x26442x2047422x18433654 24
254x853354040483930323847424544382x185148512x202x242x242x205148512x183844454247383230394840403553 25
2650355434363743-2x1850423647512x203944452x26423232422x264544392x2051473642502x18-433736345435 26
27502x1844455035-392x264254432x20423634375132473636473251373436422x204354422x2639-355045442x18 27
28344250404133344237-45482x1649523039472x224x1248484x122x2247393052492x164845-3742343341405042 28
293450413437452x1652392x22484x1247304948-4233404242403342-484930474x12482x2239522x164537344150 29
3034334530483948344241-524x12472x1642504037492x222x2249374050422x16474x1252-414234483948304533 30
314x851383051353842482x24404544402x2039472x185348323248532x1847392x20404445402x244842383551303851 31
322x26402x2449423644462x2245542x185236333744333931464631393344373336522x1854452x2246443642492x2440 32
332x2654462x18404531522x242x22393649463333424444373636374444423333464936392x222x24523145402x184654 33
343445484842-4x122x1650372x2249404247524134393033333039344152474240492x2237502x164x12-42484845 34
3550323542542x26344536443739432x20-512x1847503642423650472x1851-2x20433937443645342x2654423532 35
362x26422x22524446333645364049462x183731393354442x242x244454333931372x18464940364536334644522x2242 36
374x83251483853302x1851473539382x20424048442x24454040452x24444840422x2038393547512x18305338485132 37
383439-422x225052483348412x1649404x123445304247373747423045344x1240492x164148334852502x2242-39 38
392x262x2442442x22545233443946313337362x18454636494040493646452x18363733314639443352542x2244422x24 39
404x851484447322x18402x2435513042453948532x204038383838402x2053483945423051352x24402x183247444851 40
A\B012345678910111213141516171819202122232425262728293031323334353637383940A\B
 other
 singular
 prime
 supersingular
 anomalous