Elliptische Krommen

prime = 43
A\B0123456789101112131415161718192021222324252627282930313233343536373839404142A\B
0-6x62x267x76x67x739312x2657396x67x75757576x657317x77x76x62x26393957312x26313131392x267x7316x6577x7392x26396x62x26 0
144342x244752372x182x2455384845354643544852485138--503740364034454253434050332x202x265136412x2054 1
22x22563x124649453435464546522x242x243844384043332x1649392x28553x15485044502x202x203642434253544339425232 2
32x224250335246432x2039383452423x1540455653442x162x2449392x202x28443532434843463x125450492x24454236553846 3
444484337-2x26483654545352382x2038402x20434247513355374146452x2448502x24503635343452402x18-514540 4
52x223836454954464832442x20492x1653453x1552382x204633424655422x24503x124343352x28392x24445640423439435250 5
644342x244752372x182x2455384845354643544852485138--503740364034454253434050332x202x265136412x2054 6
72x22523942562x242x28433x122x24554246383x15534944485445385043344044393543504246332x2052452x162x2032464936 7
82x223836454954464832442x20492x1653453x1552382x204633424655422x24503x124343352x28392x24445640423439435250 8
94433405145475142-432x182x2040405238342x2034383552365350542x2454503648482x242x2645-46374143374855 9
10442x20362x2633405345404050-5152544645382x243747345441512x20504342343637-384848433548552x18522x24 10
114433405145475142-432x182x2040405238342x2034383552365350542x2454503648482x242x2645-46374143374855 11
122x22563x124649453435464546522x242x243844384043332x1649392x28553x15485044502x202x203642434253544339425232 12
1344-54382x20514148365251482x26542x2043334650354045434853384255452x24342x18403736524047372x245034- 13
144452553548383734432x20413437384652-4045402x262x202x242x18484348-3642505154472x244554515040533336 14
1544484337-2x26483654545352382x2038402x20434247513355374146452x2448502x24503635343452402x18-514540 15
16442x20362x2633405345404050-5152544645382x243747345441512x20504342343637-384848433548552x18522x24 16
17442x20362x2633405345404050-5152544645382x243747345441512x20504342343637-384848433548552x18522x24 17
182x224250335246432x2039383452423x1540455653442x162x2449392x202x28443532434843463x125450492x24454236553846 18
192x2249462x24382x1655443653425645452x2440493x15504254523x123446384339482x2043433246355244332x28502x204239 19
202x2252395442422x2050503x152x28493340442x245245354546563242435343362x20444855392x164338382x24464634493x12 20
214445-40343550502x244637334743402x205254362x26374840512x185234362x244845415551422x203838535448-43 21
222x224250335246432x2039383452423x1540455653442x162x2449392x202x28443532434843463x125450492x24454236553846 22
234433405145475142-432x182x2040405238342x2034383552365350542x2454503648482x242x2645-46374143374855 23
2444484337-2x26483654545352382x2038402x20434247513355374146452x2448502x24503635343452402x18-514540 24
254445-40343550502x244637334743402x205254362x26374840512x185234362x244845415551422x203838535448-43 25
262x2249322x16523342433940433854445338422x24432x24425236462x20452x204650354434504548493x1546553x122x285639 26
272x2249322x16523342433940433854445338422x24432x24425236462x20452x204650354434504548493x1546553x122x285639 27
282x2249462x24382x1655443653425645452x2440493x15504254523x123446384339482x2043433246355244332x28502x204239 28
292x22563x124649453435464546522x242x243844384043332x1649392x28553x15485044502x202x203642434253544339425232 29
302x223836454954464832442x20492x1653453x1552382x204633424655422x24503x124343352x28392x24445640423439435250 30
314452553548383734432x20413437384652-4045402x262x202x242x18484348-3642505154472x244554515040533336 31
322x2252395442422x2050503x152x28493340442x245245354546563242435343362x20444855392x164338382x24464634493x12 32
332x2249322x16523342433940433854445338422x24432x24425236462x20452x204650354434504548493x1546553x122x285639 33
342x2252395442422x2050503x152x28493340442x245245354546563242435343362x20444855392x164338382x24464634493x12 34
3544-54382x20514148365251482x26542x2043334650354045434853384255452x24342x18403736524047372x245034- 35
3644342x244752372x182x2455384845354643544852485138--503740364034454253434050332x202x265136412x2054 36
372x22523942562x242x28433x122x24554246383x15534944485445385043344044393543504246332x2052452x162x2032464936 37
3844-54382x20514148365251482x26542x2043334650354045434853384255452x24342x18403736524047372x245034- 38
392x2249462x24382x1655443653425645452x2440493x15504254523x123446384339482x2043433246355244332x28502x204239 39
404445-40343550502x244637334743402x205254362x26374840512x185234362x244845415551422x203838535448-43 40
414452553548383734432x20413437384652-4045402x262x202x242x18484348-3642505154472x244554515040533336 41
422x22523942562x242x28433x122x24554246383x15534944485445385043344044393543504246332x2052452x162x2032464936 42
A\B0123456789101112131415161718192021222324252627282930313233343536373839404142A\B
 other
 singular
 prime
 supersingular
 anomalous